Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Land Degrad Dev ; 33(14): 2635-2646, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36249122

RESUMO

Soil degradation remains a challenge in African highlands, where land management lacks a strong context-specific evidence base. We investigated the impacts of recently implemented soil and water conservation (SWC) practices-farmyard manure addition, incorporation of crop residues in soil and fanya juu terracing under an agroforestry system on soil health indicators in the East Usambara Mountains of Tanzania. Farmers' observations of soil changes were combined with conventional soil testing to assess the initial impacts of SWC practices relative to conventional non-SWC practice. Majority of farmers (66%-83%) reported that combining fanya juu terracing with organic amendments led to soil colour change from red to black and an increase in crop yield. Despite the observed darkening of the soil, there was no significant increase in soil organic carbon stock and the contents of N, P, K. There were important changes in soil physical properties, including greater aggregate stability (mean weight diameter of 1.51-1.71 mm) in the SWC plots, a greater volume of transmission pores (>60 µm) and coarse storage pores (10-60 µm) in the surface soil layer (0-15 cm), and greater volume of fine storage pores (0.2-10 µm) and residual pores (0.2 µm) in the sub-surface layer (15-30 cm) of the SWC plots compared with the conventional plots. These changes indicate that SWC rapidly enhances infiltration and retention of water within the root zone, which are important for increasing crop yields and improving the resilience of the agro-ecosystem to environmental stress. Combining SWC with effective soil fertility management is needed for sustainable highland agriculture.

3.
Philos Trans A Math Phys Eng Sci ; 380(2221): 20210134, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35220770

RESUMO

Malawi depends on Lake Malawi outflows into the Shire River for its water, energy and food (WEF) security. We explore future WEF security risks under the combined impacts of climate change and ambitious development pathways for water use expansion. We drive a bespoke water resources model developed with stakeholder inputs, with 29 bias-corrected climate model projections, alongside stakeholder elicited development pathways, and examine impacts on stakeholder-elicited WEF sector performance metrics. Using scenario analysis, we stress-test the system, explore uncertainties, assess trade-offs between satisfying WEF metrics, and explore whether planned regulation of outflows could help satisfy metrics. While uncertainty from potential future rainfall change generates a wide range of outcomes (including no lake outflow and higher frequency of major downstream floods), we find that potential irrigation expansion in the Lake Malawi catchments could enhance the risk of very low lake levels and risk to Shire River hydropower and irrigation infrastructure performance. Improved regulation of lake outflows through the upgraded barrage does offer some risk mitigation, but trade-offs emerge between lake level management and downstream WEF sector requirements. These results highlight the need to balance Malawi's socio-economic development ambitions across sectors and within a lake-river system, alongside enhanced climate resilience. This article is part of the theme issue 'Developing resilient energy systems'.


Assuntos
Lagos , Água , Mudança Climática , Segurança Alimentar , Malaui
4.
Ecol Appl ; 32(3): e2520, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918420

RESUMO

Over a quarter of the world's land surface is grazed by cattle and other livestock, which are replacing wild herbivores, potentially impairing ecosystem structure, and functions. Previous research suggests that cattle at moderate stocking rates can functionally replace wild herbivores in shaping understory communities. However, it is uncertain whether this is also true under high stocking rates and the effects of wild herbivore on plant communities are moderate, enhanced, or simply additive to the effects of cattle at high stocking rates. To evaluate the influence of cattle stocking rates on the ability of cattle to functionally replace wild herbivores and test for interactive effects between cattle and wild herbivores in shaping understory vegetation, we assessed herbaceous vegetation in a long-term exclosure experiment in a semi-arid savanna in central Kenya that selectively excludes wild mesoherbivores (50-1000 kg) and megaherbivores (elephant and giraffe). We tested the effects of cattle stocking rate (zero/moderate/high) on herbaceous vegetation (diversity, composition, leafiness). We also tested how those effects depend on the presence of wild mesoherbivores and megaherbivores. We found that herbaceous community composition (primary ordination axis) was better explained by the presence/absence of herbivore types than by total herbivory, suggesting that herbivore identity is a more important determinant of community composition than total herbivory at high cattle stocking rates. The combination of wild mesoherbivores and cattle stocked at high rates led to increased bare ground and annual grass cover, reduced perennial grass cover and understory leafiness, and enhanced understory diversity. These shifts were weaker or absent when cattle were stocked at high stocking rates in the absence of wild mesoherbivores. Megaherbivores tempered the effects of cattle stocked at high rates on herbaceous community composition but amplified the effects of high cattle stocking rate on bare ground and understory diversity. Our results show that cattle at high stocking rates do not functionally replace wild herbivores in shaping savanna herbaceous communities contrary to previous findings at moderate stocking rates. In mixed-use rangelands, interactions between cattle stocking rate and wild herbivore presence can lead to non-additive vegetation responses with important implications for both wildlife conservation and livestock production.


Assuntos
Elefantes , Herbivoria , Animais , Animais Selvagens , Bovinos , Ecossistema , Elefantes/fisiologia , Plantas
5.
Catena (Amst) ; 203: 105336, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345115

RESUMO

Improving soil health is necessary for increasing agricultural productivity and providing multiple ecosystem services. In the African Highlands (AH) where conversion of forests to cultivation on steep slopes is leading to soil degradation, sustainable land management practices are vital. Farmers' awareness of soil health indicators (SHI) influences their choice of land management and needs to be better understood to improve communication between land managers and other stakeholders in agricultural systems. This study aims to collate and evaluate case study analyses of farmers' awareness and use of soil health indicators in African Highlands. This is achieved by using a multi-method approach that combines a meta-summary analysis of AH's SHI data from 24 published studies together with farmer interviews in the East Usambara Mountain region of Tanzania (EUM). Our findings show that farmers across the AH use observable attributes of the landscape as SHI. Out of 16 SHI reported by the farmers, vegetation performance/crop yield and soil colour were most frequently used across the AH. These were also the only two SHI that influenced farmers' land management decisions in the EUM, where organic manure addition was the only land management option resulting from observed changes in SHI. Farmers' use of only one or two SHI in land management decisions, as is the case in the EUM, seems to limit their choice and/or adoption of sustainable land management options, highlighting the need to increase awareness and use of more relevant SHI. This could be achieved by sharing SHI knowledge through learning alliances and agricultural extension service. Integration of farmers' observation techniques and conventional soil testing in a hybrid approach is recommended for a more targeted assessment of soil health to inform appropriate and sustainable land management practices.

6.
J Environ Manage ; 286: 112192, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636630

RESUMO

The challenges of soil degradation and climate change have led to the emergence of Conservation Agriculture (CA) as a sustainable alternative to tillage-based agriculture systems. Despite the recognition of positive impacts on soil health, CA adoption in Africa has remained low. Previous soil health studies have mainly focused on 'scientific' measurements, without consideration of local knowledge, which influences how farmers interpret CA impacts and future land management decisions. This study, based in Malawi, aims to 1) combine local knowledge and conventional soil science approaches to develop a contextualised understanding of the impact of CA on soil health; and 2) understand how an integrated approach can contribute to explaining farmer decision-making on land management. Key farmers' indicators of soil health were crop performance, soil consistence, moisture content, erosion, colour, and structure. These local indicators were consistent with conventional soil health indicators. By combining farmers' observations with soil measurements, we observed that CA improved soil structure, moisture (Mwansambo 7.54%-38.15% lower for CP; Lemu 1.57%-47.39% lower for CP) and infiltration (Lemu CAM/CAML 0.15 cms-1, CP 0.09 cms-1; Mwansambo CP/CAM 0.14 cms-1, CAML 0.18 cms-1). In the conventional practice, farmers perceived ridges to redistribute nutrients, which corresponded with recorded higher exchangeable ammonium (Lemu CP 76.0 mgkg -1, CAM 49.4 mgkg -1, CAML 51.7 mgkg -1), nitrate/nitrite values (Mwansambo CP 200.7 mgkg -1, CAM 171.9 mgkg -1, CAML 103.3 mgkg -1). This perception contributes to the popularity of ridges, despite the higher yield measurements under CA (Mwansambo CP 3225 kgha-1, CAML 5067 kgha-1, CAM 5160 kgha-1; Lemu CP 2886 kgha-1, CAM 2872 kgha-1, CAML 3454 kgha-1 ). The perceived carbon benefits of residues and ridge preference has promoted burying residues in ridges. Integrated approaches contribute to more nuanced and localized perceptions about land management. We propose that the stepwise integrated soil assessment framework developed in this study can be applied more widely in understanding the role of soil health in farmer-decision making, providing a learning process for downscaling technologies and widening the evidence base on sustainable land management practices.


Assuntos
Conservação dos Recursos Naturais , Solo , Agricultura , Mudança Climática , Fazendeiros , Malaui
7.
Front Nutr ; 8: 804663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155522

RESUMO

Maize is a major staple and plays an essential role in food and nutrition security in Sub-Saharan Africa (SSA). Conservation agriculture (CA), a climate-smart agriculture practise based on minimum soil disturbance, crop residue retention, and crop diversification, has been widely advocated but without extensive research on the impact it may have on maize nutrient composition, and food and nutrition security. This study assessed the grain yield, macro- and micronutrient mineral content, and nutrient yield of eight maize varieties grown in Malawi, and how these are affected by CA practises over two seasons. The minerals were analysed by inductively coupled plasma (ICP) coupled to optical emission spectroscopy (OES) and to mass spectroscopy (MS). Grain yield and Se content differed among the varieties, while C, N, Fe, K, Mg, Mn, P, and Zn were similar. The local variety Kanjerenjere showed lowest grain and nutrient yields. The open-pollinated varieties (OPVs) concentrated more minerals than the F1 hybrids, but the latter showed higher yields for both grain and nutrients. Typical consumption of the eight maize varieties could fully meet the protein and Mg dietary reference intake (DRIs) of Malawian children (1-3 years), as well as Mg and Mn needs of adult women (19-50 years), but their contribution to dietary requirements was low for Fe (39-41%) and K (13-21%). The trials showed that CA increased grain yield (1.2- to 1.8-fold) and Se content (1.1- to 1.7-fold), but that it had no effect on C, K, Mg, P, and Zn, and that N (1.1- to 1.2-fold), Mn (1.1- to 1.8-fold), and Fe (1.3- to 3.4-fold) were reduced. The high increase in grain yield under CA treatments resulted in increased yields of protein and Se, no effect on the yields of K, Mg, Mn, P, Zn, and reduced Fe yield. Conservation agriculture could contribute in reducing the risk of Se deficiency in Malawian women and children but exacerbates the risk of Fe deficiency. A combination of strategies will be needed to mitigate some of the foreseen effects of climate change on agriculture, and food and nutrition security, and improve nutrient intake.

8.
Soil Tillage Res ; 201: 104639, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32624633

RESUMO

Sub-Saharan Africa (SSA) faces climate change and food insecurity challenges, which require action to create resilient farming systems. Conservation agriculture (CA) is widely promoted across SSA but the impacts on key soil physical properties and functions such as soil structure and hydraulic properties that govern water storage and transmission are not well understood. The aim of this study was to assess the impacts of long term (10-12 years) maize-based CA on soil hydraulic conductivity, water retention and pore size distribution. Root zone (0-30 cm depth) soil total porosity, pore size distribution, saturated hydraulic conductivity (Ksat) and plant available water capacity (PAWC) of conventional maize monocrop farming systems (CP) are compared with those of adjacent CA trials with either sole maize or maize intercrop/rotation with cowpea (Vigna unguiculata L.), pigeon pea (Cajanus cajan L.) or velvet bean (Mucuna pruriens L) in trial locations across central and southern Malawi. Results show that maize-based CA systems result in significant changes to soil hydraulic properties that correlate with improved soil structure. Results demonstrate increases of 5-15 % in total porosity, 0.06-0.22 cm/min in Ksat, 3-7 % in fine pores for water storage and 3-6 % in PAWC. Maize monocrop CA had similar effect on the hydraulic properties as the maize-legume associations. The values of Ksat for CA systems were within optimum levels (0.03-0.3 cm/min) whereas PAWC was below optimum (<20 %). There was no significant build-up in soil organic matter (OM) in the CA systems. The results lead to a recommendation that crop residue management should be more pro-actively pursued in CA guidance from agricultural extension staff to increase soil OM levels, increase yields and enhance climate resilience of sub-Saharan African farming systems.

9.
Ecology ; 99(5): 1184-1193, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29484631

RESUMO

The relationship between the spatial variability of soil multifunctionality (i.e., the capacity of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems from six continents to evaluate the relative importance of aridity and mean annual temperature, and of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling. We found that increases in temperature and aridity were globally correlated to increases in SVM. Some of these climatic effects on SVM were direct, but others were indirectly driven through reductions in the number of vegetation patches and increases in soil sand content. The predictive capacity of our structural equation modelling was clearly higher for the spatial variability of N- than for C- and P-related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via changes in plant attributes. These results suggest that future changes in climate may decouple the spatial availability of these elements for plants and microbes in dryland soils. Our findings significantly advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe, which is critical for predicting changes in ecosystem functioning in response to climate change.


Assuntos
Ecossistema , Solo/química , Mudança Climática , Plantas , Temperatura
10.
Environ Manage ; 60(3): 436-453, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28540441

RESUMO

Governments and donors are investing in climate compatible development in order to reduce climate and development vulnerabilities. However, the rate at which climate compatible development is being operationalised has outpaced academic enquiry into the concept. Interventions aiming to achieve climate compatible development "wins" (for development, mitigation, adaptation) can also create negative side-effects. Moreover, benefits and negative side-effects may differ across time and space and have diverse consequences for individuals and groups. Assessments of the full range of outcomes created by climate compatible development projects and their implications for distributive justice are scarce. This article develops a framework using a systematic literature review that enables holistic climate compatible development outcome evaluation over seven parameters identified. Thereafter, we explore the outcomes of two donor-funded projects that pursue climate compatible development triple-wins in Malawi using this framework. Household surveys, semi-structured interviews and documentary material are analysed. Results reveal that uneven outcomes are experienced between stakeholder groups and change over time. Although climate compatible development triple-wins can be achieved through projects, they do not represent the full range of outcomes. Ecosystem-and community-based activities are becoming popularised as approaches for achieving climate compatible development goals. However, findings suggest that a strengthened evidence base is required to ensure that these approaches are able to meet climate compatible development goals and further distributive justice.


Assuntos
Mudança Climática , Justiça Social , Planejamento Social , Ecossistema , Política Ambiental , Humanos , Malaui , Fatores Socioeconômicos
11.
J Environ Manage ; 195(Pt 1): 25-34, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27692890

RESUMO

Conservation agriculture (CA) practices of reduced soil tillage, permanent organic soil coverage and intercropping/crop rotation, are being advocated globally, based on perceived benefits for crop yields, soil carbon storage, weed suppression, reduced soil erosion and improved soil water retention. However, some have questioned their efficacy due to uncertainty around the performance and trade-offs associated with CA practices, and their compatibility with the diverse livelihood strategies and varied agro-ecological conditions across African smallholder systems. This paper assesses the role of key institutions in Malawi in shaping pathways towards more sustainable land management based on CA by outlining their impact on national policy-making and the design and implementation of agricultural development projects. It draws on interviews at national, district and project levels and a multi-stakeholder workshop that mapped the institutional landscape of decision-making for agricultural land management practices. Findings identify knowledge gaps and institutional barriers that influence land management decision-making and constrain CA uptake. We use our findings to set out an integrated roadmap of research needs and policy options aimed at supporting CA as a route to enhanced sustainable land management in Malawi. Findings offer lessons that can inform design, planning and implementation of CA projects, and identify the multi-level institutional support structures required for mainstreaming sustainable land management in sub-Saharan Africa.


Assuntos
Conservação dos Recursos Naturais , Inclusão Escolar , Agricultura , Malaui , Solo
12.
Reg Environ Change ; 17(2): 351-366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32269500

RESUMO

Climate variability is amongst an array of threats facing agricultural livelihoods, with its effects unevenly distributed. With resource conflict being increasingly recognised as one significant outcome of climate variability and change, understanding the underlying drivers that shape differential vulnerabilities in areas that are double-exposed to climate and conflict has great significance. Climate change vulnerability frameworks are rarely applied in water conflict research. This article presents a composite climate-water conflict vulnerability index based on a double exposure framework developed from advances in vulnerability and livelihood assessments. We apply the index to assess how the determinants of vulnerability can be useful in understanding climate variability and water conflict interactions and to establish how knowledge of the climate-conflict linked context can shape interventions to reduce vulnerability. We surveyed 240 resource users (farmers, fishermen and pastoralists) in seven villages on the south-eastern shores of Lake Chad in the Republic of Chad to collect data on a range of exposure, sensitivity and adaptive capacity variables. Results suggest that pastoralists are more vulnerable in terms of climate-structured aggressive behaviour within a lake-based livelihoods context where all resource user groups show similar levels of exposure to climate variability. Our approach can be used to understand the human and environmental security components of vulnerability to climate change and to explore ways in which conflict-structured climate adaptation and climate-sensitive conflict management strategies can be integrated to reduce the vulnerability of populations in high-risk, conflict-prone environments.

13.
Ambio ; 45(7): 781-795, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27371137

RESUMO

This article examines lake drying and livelihood dynamics in the context of multiple stressors through a case study of the "Small Lake Chad" in the Republic of Chad. Livelihoods research in regions experiencing persistent lake water fluctuations has largely focused on the well-being and security of lakeshore dwellers. Little is known about the mechanisms through which lake drying shapes livelihood drawbacks and opportunities, and whether locally evolved responses are enhancing livelihoods. Here we address these gaps using empirical, mixed-methods field research couched within the framework of livelihoods and human well-being contexts. The analysis demonstrates that limited opportunities outside agriculture, the influx of mixed ethnic migrants and the increasing spate of violence all enhance livelihood challenges. Livelihood opportunities centre on the renewal effects of seasonal flood pulses on lake waters and the learning opportunities triggered by past droughts. Although drying has spurred new adaptive behaviours predicated on seasonality, traditional predictive factors and the availability of assets, responses have remained largely reactive. The article points to where lake drying fits amongst changes in the wider socio-economic landscape in which people live, and suggests that awareness of the particularities of the mechanisms that connect lake drying to livelihoods can offer insights into the ways local people might be assisted by governments and development actors.


Assuntos
Conservação dos Recursos Naturais/métodos , Lagos/química , Modelos Teóricos , Abastecimento de Água/normas , Agricultura , Chade , Mudança Climática , Conservação dos Recursos Naturais/tendências , Secas , Cinética , Estações do Ano
14.
Perspect Plant Ecol Evol Syst ; 20: 56-64, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27330404

RESUMO

Theoretical models predict lognormal species abundance distributions (SADs) in stable and productive environments, with log-series SADs in less stable, dispersal driven communities. We studied patterns of relative species abundances of perennial vascular plants in global dryland communities to: i) assess the influence of climatic and soil characteristics on the observed SADs, ii) infer how environmental variability influences relative abundances, and iii) evaluate how colonisation dynamics and environmental filters shape abundance distributions. We fitted lognormal and log-series SADs to 91 sites containing at least 15 species of perennial vascular plants. The dependence of species relative abundances on soil and climate variables was assessed using general linear models. Irrespective of habitat type and latitude, the majority of the SADs (70.3%) were best described by a lognormal distribution. Lognormal SADs were associated with low annual precipitation, higher aridity, high soil carbon content, and higher variability of climate variables and soil nitrate. Our results do not corroborate models predicting the prevalence of log-series SADs in dryland communities. As lognormal SADs were particularly associated with sites with drier conditions and a higher environmental variability, we reject models linking lognormality to environmental stability and high productivity conditions. Instead our results point to the prevalence of lognormal SADs in heterogeneous environments, allowing for more evenly distributed plant communities, or in stressful ecosystems, which are generally shaped by strong habitat filters and limited colonisation. This suggests that drylands may be resilient to environmental changes because the many species with intermediate relative abundances could take over ecosystem functioning if the environment becomes suboptimal for dominant species.

15.
J Environ Manage ; 114: 328-35, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23158525

RESUMO

Demands are increasing for scientific research to be explicitly and demonstrably policy relevant. Research funders are requiring greater returns on their investments and scientists are expected to demonstrate clearly how their research can inform policy and regulation to deliver positive consequences for societal, economic and environmental wellbeing. Within the co-evolving context of environmental management research in dryland Africa and the policy approaches designed to mitigate land degradation, few academic analyses have deconstructed the practical 'bottom-up' actions that can help to channel scientific research into national decision-making and policy. Similarly, while international platforms developed by the United Nations Convention to Combat Desertification have started to facilitate greater knowledge exchange between scientists and policymakers, analyses have failed to consider the powerful informal actions that scientists can take to allow their research to inform evidence-based international policy. Drawing on examples in the literature from research on land degradation and sustainable land management across sub-Saharan African drylands, we identify key enabling activities that help make scientific research more visible, accessible to, and compatible with, policy processes at local, national and international levels. We argue that these enablers are applicable to other environmental research areas beyond land degradation, and suggest that improved understanding of science into policy processes that look across multiple scales and levels will help researchers and policy-makers to better match information supply and demand to the mutual benefit of both groups.


Assuntos
Conservação dos Recursos Naturais , Política Ambiental , África , Clima Desértico , Disseminação de Informação
16.
Philos Trans R Soc Lond B Biol Sci ; 367(1606): 3178-90, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23045714

RESUMO

Climate finance investments and international policy are driving new community-based projects incorporating payments for ecosystem services (PES) to simultaneously store carbon and generate livelihood benefits. Most community-based PES (CB-PES) research focuses on forest areas. Rangelands, which store globally significant quantities of carbon and support many of the world's poor, have seen little CB-PES research attention, despite benefitting from several decades of community-based natural resource management (CBNRM) projects. Lessons from CBNRM suggest institutional considerations are vital in underpinning the design and implementation of successful community projects. This study uses documentary analysis to explore the institutional characteristics of three African community-based forest projects that seek to deliver carbon-storage and poverty-reduction benefits. Strong existing local institutions, clear land tenure, community control over land management decision-making and up-front, flexible payment schemes are found to be vital. Additionally, we undertake a global review of rangeland CBNRM literature and identify that alongside the lessons learned from forest projects, rangeland CB-PES project design requires specific consideration of project boundaries, benefit distribution, capacity building for community monitoring of carbon storage together with awareness-raising using decision-support tools to display the benefits of carbon-friendly land management. We highlight that institutional analyses must be undertaken alongside improved scientific studies of the carbon cycle to enable links to payment schemes, and for them to contribute to poverty alleviation in rangelands.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura Florestal/métodos , Agricultura/métodos , Carbono/química , Ciclo do Carbono , Participação da Comunidade/psicologia , Conservação dos Recursos Naturais/economia , Tomada de Decisões , Técnicas de Apoio para a Decisão , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Agricultura Florestal/economia , Agricultura Florestal/organização & administração , Humanos , Renda , Pobreza/prevenção & controle , Solo/química
17.
Trends Ecol Evol ; 25(2): 90-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19758724

RESUMO

As urbanisation increases globally and the natural environment becomes increasingly fragmented, the importance of urban green spaces for biodiversity conservation grows. In many countries, private gardens are a major component of urban green space and can provide considerable biodiversity benefits. Gardens and adjacent habitats form interconnected networks and a landscape ecology framework is necessary to understand the relationship between the spatial configuration of garden patches and their constituent biodiversity. A scale-dependent tension is apparent in garden management, whereby the individual garden is much smaller than the unit of management needed to retain viable populations. To overcome this, here we suggest mechanisms for encouraging 'wildlife-friendly' management of collections of gardens across scales from the neighbourhood to the city.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Plantas/classificação , Plantas/genética , Animais , Planejamento de Cidades , Urbanização/tendências
18.
Ecol Appl ; 18(5): 1253-69, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18686585

RESUMO

Given the growing popularity of indicators among policy-makers to measure progress toward conservation and sustainability goals, there is an urgent need to develop indicators that can be used accurately by both specialists and nonspecialists, drawing from the knowledge possessed by each group. This paper uses a case study from the Kalahari, Botswana to show how participatory and ecological methods can be combined to develop robust indicators that are accessible to a range of users to monitor and enhance the sustainability of land management. First, potential environmental sustainability indicators were elicited from pastoralists in three study sites. This knowledge was then evaluated by pastoralists, before being tested empirically using ecological and soil-based techniques. Despite the wealth of local knowledge about indicators, this knowledge was thinly spread. The knowledge was more holistic than published indicator lists for monitoring rangelands, encompassing vegetation, soil, livestock, wild animal, and socioeconomic indicators. Pastoralist preferences for vegetation and livestock indicators match recent shifts in ecological theory suggesting that livestock populations reach equilibrium with key forage resources in semiarid environments. Although most indicators suggested by pastoralists were validated through empirical work (e.g., decreased grass cover and soil organic matter content, and increased abundance of Acacia mellifera and thatching grass), they were not always sufficiently accurate or reliable for objective degradation assessment, showing that local knowledge cannot be accepted unquestioningly. We suggest that, by combining participatory and ecological approaches, it is possible to derive more accurate and relevant indicators than either approach could achieve alone.


Assuntos
Ecologia , Conservação dos Recursos Naturais , Pesquisa Empírica
19.
J Environ Manage ; 78(2): 114-27, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16095806

RESUMO

The modern environmental management literature stresses the need for community involvement to identify indicators to monitor progress towards sustainable development and environmental management goals. The purpose of this paper is to assess the impact of participatory processes on sustainability indicator identification and environmental management in three disparate case studies. The first is a process of developing partnerships between First Nations communities, environmental groups, and forestry companies to resolve conflicts over forest management in Western Canada. The second describes a situation in Botswana where local pastoral communities worked with development researchers to reduce desertification. The third case study details an on-going government led process of developing sustainability indicators in Guernsey, UK, that was designed to monitor the environmental, social, and economic impacts of changes in the economy. The comparative assessment between case studies allows us to draw three primary conclusions. (1) The identification and collection of sustainability indicators not only provide valuable databases for making management decisions, but the process of engaging people to select indicators also provides an opportunity for community empowerment that conventional development approaches have failed to provide. (2) Multi-stakeholder processes must formally feed into decision-making forums or they risk being viewed as irrelevant by policy-makers and stakeholders. (3) Since ecological boundaries rarely meet up with political jurisdictions, it is necessary to be flexible when choosing the scale at which monitoring and decision-making occurs. This requires an awareness of major environmental pathways that run through landscapes to understand how seemingly remote areas may be connected in ways that are not immediately apparent.


Assuntos
Participação da Comunidade , Conservação dos Recursos Naturais , Botsuana , Colúmbia Britânica , Guernsey
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...